Update on Thalassaemia and Sickle Cell Disease

Dr Jacquie Taylor
Haematology Advanced Trainee
Mater Hospital Brisbane
Haemoglobinopathies

- Global Health problem
- Traditionally disorders found in malaria endemic regions
- But global Migration → changing distribution of genes
- Incidence in Australia traditionally low but will mimic immigration patterns
- Previous migrants from Mediterranean and South East Asia → introduced more thalassemia carriers
- Anecdotal current increase in Sickle Cell disease
- Carrier state asymptomatic
- Difficult to monitor prevalence
Queensland Refugee Population

- Clinical Audit - 1460 individuals HbEPP results
- 2009-2012

Pie chart showing:
- Normal Results - 84%
- Indeterminate (HbA2 3.3-3.5%) - 5.8%
- Hb Lepore Trait - 0.2%
- HbC Trait - 0.2%
- Likely Beta Thal Trait - 1.3%
- HbE Trait - 1.4%
- Beta Thal Trait - 2.8%
- HbS Trait - 4.4%
Clinically Significant Haemoglobinopathies

<table>
<thead>
<tr>
<th>Haemoglobin Bart's hydrops fetalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>β thalassaemia major and intermedia including that resulting from β thalassaemia/haemoglobin E compound heterozygosity</td>
</tr>
<tr>
<td>Sickle cell disease</td>
</tr>
<tr>
<td>Sickle cell anaemia</td>
</tr>
<tr>
<td>Sickle cell/haemoglobin C disease</td>
</tr>
<tr>
<td>Sickle cell/β thalassaemia</td>
</tr>
<tr>
<td>Sickle cell/δβ thalassaemia</td>
</tr>
<tr>
<td>Sickle cell/haemoglobin Lepore</td>
</tr>
<tr>
<td>Sickle cell/haemoglobin D-Punjab</td>
</tr>
<tr>
<td>Sickle cell/haemoglobin O-Arab</td>
</tr>
</tbody>
</table>
Tonight's Talk

• Common Hb disorders
 • Sickle cell disease & Compound heterozygote disease
 • Beta thalassaemia
 • Alpha thalassaemia

• Inheritance and risk assessment for pregnancies

• Screening – Who/When

• Diagnostic testing

• Clinical presentation

• Management
Sickle Cell Disease
Sickle Cell Disease

- Inherited group of disorders
- Characterised by severe pain crisis due to vasoocclusive phenomena and haemolytic anaemia.
- Mutation in beta globin gene \rightarrow HbS
- HbS polymerises to filaments when deoxygenated
- Symptomatic due to homozygous or compound heterozygous state
Sickle Cell Disease inheritance

Both parents are carriers of haemoglobin S (HbS)

- $\beta^+ \rightarrow$ functional β-globin genes
- $S \rightarrow$ abnormal haemoglobin (HbS)

For every pregnancy the chances are:

- 25% with SC disease (HbS/HbS)
- 50% carriers of HbS
- 25% with functional β-globin genes

One parent is a carrier of haemoglobin S (HbS) and the other is a carrier of β-thalassaemia

- $\beta^- \rightarrow$ non-functional β-globin genes
- $S \rightarrow$ abnormal haemoglobin (HbS)

For every pregnancy the chances are:

- 25% with compound haemoglobin pattern (HbS/β)
- 25% carriers of a non-functional β-globin gene (i.e., carriers of β-thalassaemia)
- 25% carriers of HbS
- 25% having functional β-globin genes (i.e., two functional β-globin genes)
Screening – who to test

- Family history
- Ethnicity
 - Up to 1:5 carrier rate in Africa
 - HbS gene most prevalent in persons of African, Arabian, and Asian-Indian ancestry
- Unexplained anaemia
- +/- signs of haemolysis - ↑LDH, ↑bili, ↑retics
 ↓haptoglobin
- May have normal FBC

NOTE: Sickle cell disease does not cause a microcytosis unless coexistent thalassaemia trait
Diagnosis – sickle Hb

- Haemoglobin electrophoresis (HbEPP)
- Parents – if both carriers refer for Genetic counselling, also if carriers of other beta globin mutations or deletions
- Normal Adult
 - HbA → $\alpha_2\beta_2 = 95\text{-}98\%$ of all haemoglobin
 - HbF → $\alpha_2\gamma_2 = <1\%$
 - HbA2 → $\alpha_2\delta_2 = 2\text{-}3.5\%$
 - HbS → $\alpha_2S_2 = 0\%$
Sickle cell disease presentation

• Asymptomatic at birth
• First presentation may be with life threatening event
• Overwhelming sepsis
• Pain crisis
• Acute chest syndrome
• Acute Splenic sequestration
• Stroke
Treatment of sickle cell disease

- Vaccinations – functionally asplenic – spleen.org.au
 - Pneumococcal
 - Haemophilis influenzae
 - Meningococcal
- Prophylactic penicillin
 - Daily amoxicillin until at least age 5yrs
 - Emergency supply of Augmentin
- Avoid triggers to pain crises
 - Avoid dehydration, extremes of temperature, Hypoxia (smoking, altitude, intensive exercise), infections
- Hydroxyurea
 - ↑increases HbF, increases NO → improved survival, decreased frequency of pain crisis
- Folate
Asplenia/Hyposplenism – Paediatric Guidelines

Age 0 to 18 years

Additional IMMUNISATIONS for people with Asplenia or Hyposplenism

- NIP – national immunization program

Vaccination Guidelines

<table>
<thead>
<tr>
<th>Vaccine Type</th>
<th>Pneumococcal Vaccines*</th>
<th>Meningococcal Vaccines</th>
<th>Haemophilus influenza type b (Hib) Vaccine</th>
<th>Influenza Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brands</td>
<td>Prevenar13</td>
<td>Pneumovax23*</td>
<td>Menevac#</td>
<td>InfanrixHexa Menitorix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Variable</td>
</tr>
<tr>
<td>< 2 years of age</td>
<td>Pneumococcal Conjugate Vaccine 13vPCV</td>
<td>Pneumococcal Polysaccharide Vaccine 23vPPV</td>
<td>Meningococcal Quadrivalent Conjugate Vaccine 4vMenCV_A CWY</td>
<td>Bexsero</td>
</tr>
<tr>
<td></td>
<td>Primary course as per NIP</td>
<td>1 dose at 4-5 years of age</td>
<td>>6 weeks to ≤6 months 3 doses (8 weeks apart) 4th dose at 12 months of age</td>
<td>Note: Requires prophylactic paracetamol%</td>
</tr>
<tr>
<td></td>
<td>1 additional dose at ≥12months of age</td>
<td>7 to ≤24months 2 doses (8 weeks apart)</td>
<td>>6weeks to ≤6 months 3 doses (8 weeks apart) 4th dose at 12 months of age</td>
<td>>6 months to < 9 years of age</td>
</tr>
<tr>
<td>2-5 years of age</td>
<td>Primary course as per NIP</td>
<td>1 dose at 4-5 years of age</td>
<td>7 to ≤12months 2 doses (8 weeks apart) 3rd dose at 12 months (or 8 weeks post previous dose, whichever is later)</td>
<td>2 doses</td>
</tr>
<tr>
<td></td>
<td>1 additional dose at >12months of age</td>
<td>2 doses (8 weeks apart)</td>
<td>>13 to ≤ 24 months 2 doses (8 weeks apart)</td>
<td>Recommend seasonal influenza vaccine Every year (one dose)</td>
</tr>
<tr>
<td>>5 years of age</td>
<td>1 dose (if no previous doses as > 12 months at age)</td>
<td>2 doses (8 weeks apart)</td>
<td>2 doses (8 weeks apart)</td>
<td>See ATAGI guidelines annually</td>
</tr>
<tr>
<td>Boosters</td>
<td>Nil required</td>
<td>Booster 5 years post 1st dose</td>
<td>Booster 3 years post primary course Review ongoing boosters every 5 years</td>
<td>Booster requirements currently unknown, review every 5 years</td>
</tr>
</tbody>
</table>
Beta Thalassaemia
Beta thalassaemia inheritance

- One Beta Globin Gene, two copies
 - $\beta^0\beta^0$ – BT major
 - $\beta\beta^0$ – BT trait
 - $\beta^0\beta^+$ or $\beta^+\beta^+$ BT intermedia

RISK LIKELY TO BE IDENTIFIED EARLY AS AT LEAST ONE PARENT HAS BETA THAL MAJOR

MOST LIKELY CASE TO BE MISSED DUE TO LACK OF SCREENING AND BOTH PARENTS ASYMPTOMATIC CARRIERS
Beta Thalassaemia Trait

- When to suspect
 - Microcytic, hypochromic anaemia in Iron replete patient
 - Family history
 - Ethnicity

- How to test
 - Haemoglobin EPP – Haemoglobin studies
 - Raised HbA2 >3.5% is diagnostic beta trait

- Who/when to test
 - diagnosis microcytosis – to avoid erroneous iron prescription
 - Planning pregnancies – to determine risk of beta thal major
 - Family history of beta thal or sickle cell or HbC/HbE
Beta thalassaemia intermedia

• “highly diverse” group of beta thalassaemia
• red cells survival sufficiently short-lived to cause anaemia but without patients requiring regular blood transfusions
• Mutation → reduction but not absence of beta globin production
• Beta plus syndromes
• Present later in childhood
Beta Thalassaemia Major

• Severe haemoglobinopathy - Transfusion Dependent
• Ideally risk of an child being born affected by Beta thal major should be predicted prenatally
• Couples at risk of an affected child should be referred for genetic counselling preconception
• If already pregnant
 • Assess risk – test both parents
 • If both parents carriers – 25% risk with every pregnancy
• Is early termination of pregnancy an option – gestation?
 • And would the couple consider it if diagnosis was confirmed
 • Yes – then CVS (10-14 weeks) and beta gene testing
 • No – await birth
• Diagnostic test after birth
 • Gene test, HbEPP less accurate in neonates as HbA very small amounts at birth
• But there is no routine maternal or newborn screening in Australia
• So when will these kids present
Presentation of Beta thal Major

• Healthy at birth

• Signs and symptoms by 6 to 12 months of age
 • pallor, irritability, growth retardation, abdominal swelling due to hepatosplenomegaly, and jaundice
 • severe hemolytic anemia with markedly abnormal hypochromic, microcytic red cells

• If left untreated – bony abnormalities due to extramedullary haematopoiesis – chipmunk facies

• Diagnosis
 • Confirmed by HbEPP –
 • absence or severely reduced HbA
 • only HbF and HbA2 present
Management of Beta thal Major

- Transfusion
 - stops marrow expansion – bony deformities, improves growth
- Iron Chelation
 - Critical to improved survival
- If had splenectomy – (minority)
 - Vaccinations
 - Prophylactic antibiotics

Complications of beta Thal major
- Osteoporosis, Extramedullary hematopoiesis, Hypogonadism, Cholelithiasis, Thrombosis, Pulmonary hypertension, Abnormal liver function, Leg ulcers, Hypothyroidism, Heart failure, Diabetes mellitus

Endocrinologist, cardiologist, ophthalmologist involved
Alpha Thalassaemia
Alpha thalassemia

- When to suspect
 - Microcytic, hypochromic anaemia in Iron replete patient
 - And beta thalassaemia has been excluded (Normal HbEPP)
 - Or family history

- Who/when to test
 - Planning pregnancies - Most important time to test is to predict risk of hydrops fetalis
 - Symptomatic/abnormal RBC indices
 - Deletions of 1 gene (silent/alpha thal minima) or 2 gene (alpha thal minor/trait) cannot be excluded based on normal FBC indices

- Alpha gene test is not covered by medicare - cost $70-100

- Test cost covered by Mater Pathology for patients that are referred from public specialist outpatients or antenatal clinic
Risk of alpha thalassaemia major

Assess Risk - Parents Genotypes
• Need to inherit two mutated alpha genes from each parent
• Two asymptomatic carriers of 2 gene deletions can cause hydrops fetalis in offspring
 • Only if on same chromosome ie Cis --/αα
 • Cis deletion more common if Asian descent
 • (Trans deletion α-/α- more likely African descent)

Alpha Thalassaemia Major/ HbBarts/ Hydrops fetalis
• Deletion of all 4 alpha globin genes --/--
 • Incompatible with extra uterine life
 • Unable to form any Fetal or Adult haemoglobin
 • Causes hydrops fetalis
 • Associated with increased maternal morbidity and mortality

• If risk of hydrops based on parents genotypes then couple should be offered, preconception counselling, early pregnancy diagnosis and therapeutic termination of pregnancy
Alpha Thal inheritance/risk

- Both parents carriers of 2 gene deletions
- but deletions are on different chromosomes
- “Trans” deletion
- NO RISK OF HYDROPS
- All offspring carriers
ONE PARENT WITH HbH DISEASE (3 NON-FUNCTIONAL α-GLOBIN GENES) AND THE OTHER A SILENT CARRIER OF α-THALASSAEMIA (αα-THAL) (1 NON-FUNCTIONAL α-GLOBIN GENE)

FOR EVERY PREGNANCY THE CHANCES ARE:

25% CARRIERS OF αα-THALASSAEMIA (trans)
25% CARRIERS OF αα-THALASSAEMIA (cis)
25% CARRIERS OF αα-THALASSAEMIA (SILENT CARRIER)
25% WITH HbH DISEASE

"cis" deletion

25% or ¼ risk of hydrops in offspring
HbH disease

Not considered critical to diagnose before birth but can cause clinically significant disease

- $\alpha-/--$ deletions of 3 of the 4 α-globin genes
- Excess beta globin chains form $\beta4$ tetramers called HbH
- Diagnosis – Alpha gene testing
- Variable phenotype
 - Haemolytic anaemia during gestation
 - Symptomatic at birth - Jaundice and anaemic
 - Stigmata of chronic haemolytic anaemia,
 - hepatosplenomegaly,
 - ↑indirect hyperbilirubinemia, ↑LDH, ↓ haptoglobin,
 - leg ulcers,
 - osteopenia,
 - premature biliary tract disease (pigmented gall stones)
- Usually not transfusion dependent
 - May require transfusions during times of increased stress (inter-current illness, pregnancy, oxidative medications)
- Prone to iron accumulation due to ineffective erythropoiesis
HbH disease - Management

• Key Management
 • Monitor Haemoglobin if increased symptoms of anaemia
 • Refer for transfusion if required
 • Folate supplementation during haemolysis exacerbations
 • Avoid additional iron unless proven deficiency ferritin <20
 • Chelation considered if evidence of iron loading

• Preconception counselling
 • Partner of any patient with HbH planning children should have genetic test done.
 • 25% Risk of hydrops if partner has 2 gene deletion on one chromosome (cis deletion)
1. Assess risk before 10 weeks’ gestation
 One of:
 • High-risk ethnicity*
 • Unexplained microcytosis/hypochromia (MCV, ≤80fL or MCH, ≤27pg)
 • Family history or biological parent with known haemoglobinopathy†
 • Unexplained anaemia

2. Request on pregnant mother‡
 • FBC (haemoglobin level, MCV, MCH)
 • Ferritin test
 • Haemoglobinopathy screening tests
 AND document:
 • Gestation, ethnicity and indication for testing

 Haemoglobinopathy unlikely
 → No further action

 Haemoglobinopathy† confirmed or not excluded in mother
 → 3. Test father‡
 • FBC (haemoglobin level, MCV, MCH)
 • Ferritin test
 • Haemoglobinopathy screening tests
 AND document:
 • Ethnicity, partner name and date of birth

 If both parents are haemoglobinopathy carriers

 If only one parent is a haemoglobinopathy carrier
 → No further action§
Key points

• FBC indices
 • Thalassaemias – microcytosis
 • Sickle cell anaemia – Not microcytic

• Presentation
 • Alpha thal major – in gestation
 • Beta thal and beta Variants – after birth (>6months)

• Diagnosis
 • Beta (thal/sickle/HbC/HbE/HbD/HbO) → HbEPP
 • Alpha thalassaemia -> gene testing

• All haemoglobinopathies → iron overload, avoid supplements unless deficient

• Pre-pregnancy screening ideally